metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42⋊13D6, C6.152+ 1+4, C4⋊C4⋊56D6, D4⋊9(C4×S3), (C4×D4)⋊7S3, (S3×D4)⋊5C4, (D4×C12)⋊9C2, (C22×C4)⋊7D6, (C4×D12)⋊24C2, D12⋊13(C2×C4), C22⋊C4⋊53D6, (D4×Dic3)⋊8C2, (C4×C12)⋊16C22, D6⋊C4⋊62C22, (C2×D4).245D6, C2.3(D4○D12), (C2×C6).89C24, C6.22(C23×C4), Dic3⋊5D4⋊14C2, D6.8(C22×C4), C42⋊2S3⋊11C2, C2.3(D4⋊6D6), C12.32(C22×C4), C4⋊Dic3⋊73C22, Dic3⋊4D4⋊45C2, (C2×C12).587C23, Dic3⋊C4⋊64C22, (C22×C12)⋊36C22, C3⋊3(C22.11C24), (C4×Dic3)⋊11C22, (C6×D4).253C22, C22.32(S3×C23), Dic3.9(C22×C4), (C2×D12).258C22, C6.D4⋊48C22, (S3×C23).38C22, C23.178(C22×S3), (C22×C6).159C23, (C22×Dic3)⋊8C22, (C22×S3).168C23, (C2×Dic3).201C23, C4.32(S3×C2×C4), (C2×S3×D4).7C2, (C4×S3)⋊3(C2×C4), C3⋊D4⋊3(C2×C4), (C2×D6⋊C4)⋊34C2, C22.2(S3×C2×C4), (C3×D4)⋊12(C2×C4), (C4×C3⋊D4)⋊40C2, (S3×C2×C4)⋊46C22, C4⋊C4⋊7S3⋊14C2, C2.24(S3×C22×C4), (S3×C22⋊C4)⋊27C2, (C3×C4⋊C4)⋊56C22, (C22×S3)⋊8(C2×C4), (C2×C6).2(C22×C4), (C3×C22⋊C4)⋊63C22, (C2×C4).282(C22×S3), (C2×C3⋊D4).110C22, SmallGroup(192,1104)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C42⋊13D6
G = < a,b,c,d | a4=b4=c6=d2=1, ab=ba, cac-1=dad=a-1, bc=cb, dbd=a2b, dcd=c-1 >
Subgroups: 904 in 338 conjugacy classes, 151 normal (43 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, S3, C6, C6, C2×C4, C2×C4, C2×C4, D4, D4, C23, C23, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C2×C6, C2×C6, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C4×S3, C4×S3, D12, C2×Dic3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C2×C12, C3×D4, C22×S3, C22×S3, C22×S3, C22×C6, C2×C22⋊C4, C42⋊C2, C4×D4, C4×D4, C22×D4, C4×Dic3, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, D6⋊C4, C6.D4, C4×C12, C3×C22⋊C4, C3×C4⋊C4, S3×C2×C4, S3×C2×C4, C2×D12, S3×D4, C22×Dic3, C2×C3⋊D4, C22×C12, C6×D4, S3×C23, C22.11C24, C42⋊2S3, C4×D12, S3×C22⋊C4, Dic3⋊4D4, C4⋊C4⋊7S3, Dic3⋊5D4, C2×D6⋊C4, C4×C3⋊D4, D4×Dic3, D4×C12, C2×S3×D4, C42⋊13D6
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, C22×C4, C24, C4×S3, C22×S3, C23×C4, 2+ 1+4, S3×C2×C4, S3×C23, C22.11C24, S3×C22×C4, D4⋊6D6, D4○D12, C42⋊13D6
(1 41 17 31)(2 32 18 42)(3 37 13 33)(4 34 14 38)(5 39 15 35)(6 36 16 40)(7 19 44 27)(8 28 45 20)(9 21 46 29)(10 30 47 22)(11 23 48 25)(12 26 43 24)
(1 21 4 24)(2 22 5 19)(3 23 6 20)(7 42 47 35)(8 37 48 36)(9 38 43 31)(10 39 44 32)(11 40 45 33)(12 41 46 34)(13 25 16 28)(14 26 17 29)(15 27 18 30)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 6)(2 5)(3 4)(7 47)(8 46)(9 45)(10 44)(11 43)(12 48)(13 14)(15 18)(16 17)(19 30)(20 29)(21 28)(22 27)(23 26)(24 25)(31 36)(32 35)(33 34)(37 38)(39 42)(40 41)
G:=sub<Sym(48)| (1,41,17,31)(2,32,18,42)(3,37,13,33)(4,34,14,38)(5,39,15,35)(6,36,16,40)(7,19,44,27)(8,28,45,20)(9,21,46,29)(10,30,47,22)(11,23,48,25)(12,26,43,24), (1,21,4,24)(2,22,5,19)(3,23,6,20)(7,42,47,35)(8,37,48,36)(9,38,43,31)(10,39,44,32)(11,40,45,33)(12,41,46,34)(13,25,16,28)(14,26,17,29)(15,27,18,30), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6)(2,5)(3,4)(7,47)(8,46)(9,45)(10,44)(11,43)(12,48)(13,14)(15,18)(16,17)(19,30)(20,29)(21,28)(22,27)(23,26)(24,25)(31,36)(32,35)(33,34)(37,38)(39,42)(40,41)>;
G:=Group( (1,41,17,31)(2,32,18,42)(3,37,13,33)(4,34,14,38)(5,39,15,35)(6,36,16,40)(7,19,44,27)(8,28,45,20)(9,21,46,29)(10,30,47,22)(11,23,48,25)(12,26,43,24), (1,21,4,24)(2,22,5,19)(3,23,6,20)(7,42,47,35)(8,37,48,36)(9,38,43,31)(10,39,44,32)(11,40,45,33)(12,41,46,34)(13,25,16,28)(14,26,17,29)(15,27,18,30), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6)(2,5)(3,4)(7,47)(8,46)(9,45)(10,44)(11,43)(12,48)(13,14)(15,18)(16,17)(19,30)(20,29)(21,28)(22,27)(23,26)(24,25)(31,36)(32,35)(33,34)(37,38)(39,42)(40,41) );
G=PermutationGroup([[(1,41,17,31),(2,32,18,42),(3,37,13,33),(4,34,14,38),(5,39,15,35),(6,36,16,40),(7,19,44,27),(8,28,45,20),(9,21,46,29),(10,30,47,22),(11,23,48,25),(12,26,43,24)], [(1,21,4,24),(2,22,5,19),(3,23,6,20),(7,42,47,35),(8,37,48,36),(9,38,43,31),(10,39,44,32),(11,40,45,33),(12,41,46,34),(13,25,16,28),(14,26,17,29),(15,27,18,30)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,6),(2,5),(3,4),(7,47),(8,46),(9,45),(10,44),(11,43),(12,48),(13,14),(15,18),(16,17),(19,30),(20,29),(21,28),(22,27),(23,26),(24,25),(31,36),(32,35),(33,34),(37,38),(39,42),(40,41)]])
54 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | ··· | 2M | 3 | 4A | ··· | 4J | 4K | ··· | 4T | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 12A | 12B | 12C | 12D | 12E | ··· | 12L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 3 | 4 | ··· | 4 | 4 | ··· | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 6 | ··· | 6 | 2 | 2 | ··· | 2 | 6 | ··· | 6 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
54 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | S3 | D6 | D6 | D6 | D6 | D6 | C4×S3 | 2+ 1+4 | D4⋊6D6 | D4○D12 |
kernel | C42⋊13D6 | C42⋊2S3 | C4×D12 | S3×C22⋊C4 | Dic3⋊4D4 | C4⋊C4⋊7S3 | Dic3⋊5D4 | C2×D6⋊C4 | C4×C3⋊D4 | D4×Dic3 | D4×C12 | C2×S3×D4 | S3×D4 | C4×D4 | C42 | C22⋊C4 | C4⋊C4 | C22×C4 | C2×D4 | D4 | C6 | C2 | C2 |
# reps | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 16 | 1 | 1 | 2 | 1 | 2 | 1 | 8 | 2 | 2 | 2 |
Matrix representation of C42⋊13D6 ►in GL6(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
1 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,12,0,0,0,0,0,0,12,0,0],[5,0,0,0,0,0,0,5,0,0,0,0,0,0,0,12,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,1,0],[0,1,0,0,0,0,12,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,1,1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12] >;
C42⋊13D6 in GAP, Magma, Sage, TeX
C_4^2\rtimes_{13}D_6
% in TeX
G:=Group("C4^2:13D6");
// GroupNames label
G:=SmallGroup(192,1104);
// by ID
G=gap.SmallGroup(192,1104);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,387,1123,80,6278]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^6=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a^-1,b*c=c*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations